Однородные системы линейных уравнений
Однородная система линейных уравнений AX = 0 всегда совместна. Она имеет нетривиальные (ненулевые) решения, если r = rank A < n. Для однородных систем базисные переменные (коэффициенты при которых образуют базисный минор) выражаются через свободные переменные соотношениями вида: 
Тогда n - r линейно независимыми вектор-решениями будут: 
а любое другое решение является их линейной комбинацией. Вектор-решения образуют нормированную фундаментальную систему. В линейном пространстве множество решений однородной системы линейных уравнений образует подпространство размерности n - r; - базис этого подпространства.
|