Приветствую Вас Гость | RSS

Шпора по Аналитической Геометрии (1семестр)

Воскресенье, 22.06.2025, 00:47
Главная » 2012 » Май » 30 » (2) Обратные матрицы и их свойства
09:15
(2) Обратные матрицы и их свойства

Обра́тная ма́трица — такая матрица A−1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E:

\! AA^{-1} = A^{-1}A = E

Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.

Свойства обратной матрицы

  • \det A^{-1} = \frac{1}{\det A}, где \ \det обозначает определитель.
  • \ (AB)^{-1} = B^{-1}A^{-1} для любых двух обратимых матриц A и B.
  • \ (A^T)^{-1} = (A^{-1})^T где *^T обозначает транспонированную матрицу.
  • \ (kA)^{-1} = k^{-1}A^{-1} для любого коэффициента k\not=0 .
  • Если необходимо решить систему линейных уравнений Ax=b, (b — ненулевой вектор) где x — искомый вектор, и если A^{-1} существует, то x=A^{-1} b. В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

Просмотров: 504 | Добавил: admin | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *: